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Abstract

In this doctoral thesis, the focus is on the capability of MIMO systems
to increase channel capacity. The capacity achieved by MIMO systems is
closely related to the “channel knowledge” model which is assumed at both
ends of the MIMO link. Considering the case of MIMO complex Gaussian
ergodic channels, with perfect Channel State Information at the receiver
and Channel Distribution Information at the transmitter, the “ergodic ca-
pacity” is the maximum average mutual information between transmitter
and receiver and is achieved by a unique optimum spatial precoding trans-
mission. For the case of beamforming transmission, the maximum aver-
age mutual information is achieved by the “optimum beamformer” and
is referred to as “ergodic beamforming capacity”. Considering spatially
correlated MIMO Rician flat fading channels, there is no closed-form ex-
pression for the optimum beamformer. In this case, its calculation is per-
formed numerically and is very complex for real time applications. In this
work, it is proven that the aforementioned complex, multi-dimensional,
convex constrained optimization problem can be transformed to an 1-D
optimization problem, which can be solved very fast using standard 1-D
algorithms. This proof was based on geometrical properties, basis trans-
formations and the Karush-Kuhn-Tucker (KKT) conditions. Simulations
demonstrate that the proposed 1-D method has significantly lower compu-
tational complexity compared to multi-dimensional algorithms and that in
some operational environments the ergodic beamforming capacity is very
close or equal to the ergodic capacity. Additionally, the 3GPP MIMO
channel model is employed in order to study further (via simulations) the
performance of the optimum beamformer in practical operational scenar-
ios (urban micro/macro-cellular with/without LOS component and sub-
urban macro-cellular environments). Simulations demonstrate that the
optimum beamformer shows high performance in all cases, a fact that
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justifies the significance of the proposed solutions and the contribution of
this work.

1 Introduction

1.1 Ergodic capacity

Multiple-Input Multiple-Output (MIMO) systems employ multiple transmit and
receive antennas and exploit the fluctuations in the (received) signal level due to
multipath propagation (multipath fading) in order to increase spectral efficiency,
improve the Quality of Service and coverage and mitigate interference. These
benefits are achieved without the expense of additional bandwidth and make
MIMO a very attractive and promising option for future mobile communication
systems, especially when combined with the benefits of orthogonal frequency-
division multiplexing (OFDM). The most important techniques employed by
MIMO systems in order to achieve the aforementioned benefits are beamform-
ing, diversity and spatial multiplexing. In this doctoral thesis, the focus is on the
capability of MIMO systems to increase spectral efficiency. A MIMO system can
achieve much higher channel capacity than a conventional Single-Input Single-
Output (SISO) system, and it can be proven that the achieved capacity increases
linearly with the number of transmit or receive antenna elements [1]. However,
the capacity achieved by MIMO systems is closely related to the channel knowl-
edge model which is assumed at both ends of the link. Assuming perfect channel
knowledge, referred to as perfect Channel State Information (CSI), at both ends
of the link (transmitter-receiver), the spatial pre-coding transmission scheme
that achieves capacity was presented in [1]-[2], and includes transmission along
the right singular vectors of the channel matrix combined with “water-filling”
for optimum power allocation between the transmit directions. However, perfect
CSI at the transmitter is practically unrealistic, mainly due to the inevitable
delay in the control channel which is used to feed back the CSI from the receiver
or due to the delay in the channel estimation algorithm employed at the trans-
mitter. Instead, it is more realistic and practical to assume that the transmitter
has knowledge of the parameters of the MIMO channel distribution, since the
channel statistics usually remain invariant in a large time window, (tens to hun-
dreds of times larger than the coherence time). This channel knowledge model
is referred to as Transmitter Channel Distribution Information (CDIT) [3]. In
a CDIT model the rate-optimum transmission maximizes the average mutual
information between transmitter and receiver and the maximum rate achieved
in this case is referred to as “ergodic capacity”. Considering MIMO complex
Gaussian ergodic channels with perfect CSI at the receiver and CDIT, the op-
timum spatial pre-coding transmission has been addressed in the literature (i.e.
methods for the calculation of the optimum transmit covariance matrix have
been proposed) for the following channel models [4]-[5]:

a. MIMO Rayleigh flat fading channels. This CDIT model is referred to as
Channel Covariance Information (CCI).



b. Spatially uncorrelated MIMO Rician flat fading channels with a unit co-
variance matrix. This CDIT model is referred to as Channel Mean Information
(CMI).

c. Spatially correlated or uncorrelated with a non-unit covariance matrix
MIMO Rician flat fading channels. This CDIT model is referred to as combined
CMI-CCI model.

1.2 Ergodic beamforming capacity

In MIMO systems, when the transmit covariance matrix is constrained to be
rank-1, then all the available power is transmitted along a unique direction with
the help of a beamforming vector, as it is shown in Figure 1.

Figure 1: Beamforming transmission. v = [v1,v2, . . . vN ] is the beamforming
vector and x = [x1,x2, . . . xN ] = dv is the transmit signal vector.

The beamforming vector that maximizes the average mutual information
for this constrained scenario is referred to as “optimum beamformer” and the
achieved average mutual information as “ergodic beamforming capacity”. There
are several reasons why it is important to consider the optimum beamforming
transmission in MIMO systems:

a. The complexity of the system and as a consequence the overall cost are
significantly reduced.

b. There are operational scenarios (i.e. channels) where the ergodic beam-
forming capacity is very close to the ergodic capacity, which is achieved by
higher rank transmission schemes.

c. The ergodic beamforming capacity does not coincide with the ergodic
capacity of the channel, however, this is possible when a specific necessary and
sufficient condition is satisfied by the channel distribution. This condition is
expressed by a mathematical inequality and is referred to in the literature as
the “optimality of beamforming condition” [6].



The solution of the optimum beamforming problem has been addressed ex-
tensively in the literature for the CCI and CMI models. For these two cases,
closed-form solutions have been derived: the optimum beamformer coincides
with the dominant eigenvector of the channel correlation matrix. However,
the corresponding solution for the combined CMI-CCI model has received less
attention. For this CDIT model, there is no closed-form expression for the op-
timum beamformer and hence, the solution of the related optimization problem
remains very complex for real time applications.

In this work, it is proven that the aforementioned complex, multi-dimensional,
convex constrained optimization problem for the combined CMI-CCI model can
be transformed to a simple and equivalent 1-D optimization problem, which
can be solved very fast using standard 1-D algorithms (gradient-based or direct
search methods). This proof was based on geometrical properties of complex
vector spaces, basis transformations and the Karush-Kuhn-Tucker (KKT) con-
ditions. Moreover, a special (simpler) solution is proven for MIMO 2×M and
special cases of MIMO N ×M systems (e.g. MIMO systems with rank deficient
transmit covariance matrix), where N/M is the number of transmit/receive an-
tenna elements, respectively. The proof of this special case was based on a
geometric approach, where the definition of the external product between vec-
tors in high-dimensional complex vector spaces was exploited.

2 Rate-Optimum Beamforming Transmission in

MIMO Rician flat fading channels

2.1 MISO systems

We consider a MISO N × 1 flat fading channel with a complex Gaussian distri-
bution h ∼ N (µ,R), with mean µ 6= 0 and covariance R 6= IN (i.e. a spatially
correlated or uncorrelated with a non-unit covariance matrix MISO flat fading
channel is assumed, with a Rician distribution for the amplitude of the elements
of the channel vector h). Assuming perfect CSI at the receiver and CDIT, the
rate-optimum beamforming transmission for the channel model under consider-
ation is the solution of an 1-D optimization problem, which is expressed by the
following theorem [7]-[8]:

Theorem 1 The optimum beamformer vopt, for a MISO Rician flat fading chan-
nel with N transmit antenna elements (N > 2), mean value µ (µ ∈ C1×N , µ 6=
0) and transmit covariance matrix R (R ∈ HN

+ , R 6= IN ), can be calculated
from the following 1-D optimization problem:

vopt = arg max
v∈So

Ibf,avg(SNR,v) (1)

So = {vθ ; θ ∈ [0, φ]} (2)

where:



a. The average mutual information in (1) is expressed as:

Ibf,avg (SNR,v) = Eh
[

log2 det
(

IM + SNRhv†vh†
)]

(3)

b. φ is the angle between µ and the complex conjugate transpose of the
dominant eigenvector of the channel transmit covariance matrix R, denoted as
U

†
•1, i.e.

φ = cos−1 (|mU•1|) (4)

with m = µ/‖µ‖2
c. vθ in (2) is expressed as:

vθ = cos θ
[

1 Z(rθIN−1 −G)−1
]

WTU† (5)

where:
i. U is the eigenvector matrix of R and W is a complex N ×N orthonormal

matrix with its first column defined as W•1 = UTmT , whereas the rest of its
columns (W•i, i = 2, ..., N) are arbitrarily chosen, with the restriction that
W†W = IN . Moreover, G and Z are defined as:

G =







K22 · · · K2N

...
. . .

...
KN2 · · · KNN






(6)

Z = [K12 K13 · · · K1N ] (7)

where Klm is the lth row and mth column element of matrix K, defined as:

K =

N
∑

i=1

λi(R)WT
i•W

∗
i• (8)

with λi(R) the ith eigenvalue of R.
ii. rθ is the maximum real root of the 2(N − 1)-degree polynomial:

P (x; θ) = cos2 θ
N−1
∑

i=1

|Zgi|
2

[

N−1
∏

j=1
j 6=i

(x − λi(G))2

]

− sin2 θ
N−1
∏

i=1

(x− λi(G))2 (9)

where gi ∈ C(N−1)×1 is the ith eigenvector of matrix G.

Theorem 1 implies that the optimum beamformer belongs to a continuous
trajectory (the continuity of the trajectory can be mathematically proven) that
is defined by the vectors of So (see (2)), which lies on the surface of the unit-

radius Euclidean ball, starts from m (for θ = 0) and ends to U
†
•1 (for θ = φ).

This is visualized in Figure 2.
Theorem 2 below ([7]-[8]) provides an alternative geometrically-based ap-

proach, especially for MISO systems with N = 2 transmit antenna elements.



Figure 2: Geometric interpretation of 1-D method (Theorem 1).

Moreover, this theorem is also mathematically valid for the following special
cases, with N > 2:

a. When µ is a point in the hyperplane defined by U
†
•1 and U

†
•2 (i.e. the

two dominant eigenvectors of R).
b. When the channel covariance matrix has two eigenvalues, λ1(R) and

λ2(R) (λ1(R) > λ2(R)) with algebraic multiplicity one and N −1, respectively,
or it is rank deficient, with rank{R} 6 2.

Theorem 2 For MISO systems with N = 2, vθ can be expressed by the follow-
ing (closed-form) equation:

vθ = cos θ
U

†
•1m

†m

‖U†
•1m

†m‖2
+ sin θ

m∗
(

mTU
†
•1 −U∗

•1m
)

‖m∗

(

mTU
†
•1 −U∗

•1m
)

‖2
(10)

Moreover, in the context of this work, it is also proven that in MISO systems
the average mutual information for the beamforming scenario can be calculated
by an infinite-series, which converges fast (only a few tens of terms are required)
to the corresponding value calculated by using Monte Carlo integration with
thousands of channel samples [7]-[8]:

Ibf,avg(θ) = Ibf,avg(SNR,vθ) = (ln2)
−1

exp

(

1− SNR |µv†|2

SNRvRv†

)

×

∞
∑

n=0

[

1

n!

(

|µv†|2

vRv†

)n n
∑

k=0

(

1

SNRvRv†

)k

Γ

(

−k,
1

SNRvRv†

)

] ∣

∣

∣

∣

∣

v=vθ

(11)

Using the infinite-series (11) in Theorem 1 and 2 (see equations (1)-(2)) the
1-D method for the calculation of the optimum beamformer in MISO systems



can be further simplified and hence, the relative computational complexity is
further reduced.

2.2 MIMO systems

We consider a MIMO N × M flat fading channel with a complex Gaussian
distribution H ∼ N (vec (Hm) ,R), with a rank -1 channel mean Hm 6= 0 (Hm

represents the LOS component) and covariance R = RT
t ⊗ Rr 6= IMN , with

Rt/Rr the channel transmit/receive covariance matrices respectively. Assuming
perfect CSI at the receiver and CDIT, it can be proven [9] that the rate-optimum
beamforming transmission for the channel model under consideration (spatially
correlated or uncorrelated with a non-unit covariance matrix MIMO Rician
flat fading channel) is the solution of an 1-D optimization problem, which is
expressed using Theorem 1 with the following modification: the normalized
channel mean vector in the MISO case, which was denoted in Theorem 1 as m,
is replaced by the complex conjugate transpose of the right singular vector of
Hm, denoted as q ∈ C1×N , in the MIMO case1.

In the same manner, for MIMO N ×M flat fading channels with N = 2 or
N > 3 and rank{Rt} 6 2, vθ is expressed using equation (10) (Theorem 2) and
replacing m with q [9].

2.3 Results for the computational complexity of the 1-D

method

The computational complexity of the proposed 1-D method - expressed as the
runtime (in seconds) per iteration - is presented via simulations with respect to:

a. The number of channel samples which where used for the calculation of
the ergodic beamforming capacity with the Monte Carlo method.

b. The number of transmit antenna elements (N).
The aforementioned complexity is compared with the corresponding com-

plexity of the following multi-dimensional algorithms, which can also be em-
ployed in order to calculate the optimum beamformer:

a. An interior-point algorithm with logarithmic barrier function, for MISO
and MIMO systems [10].

b. An iterative asymptotic (and hence, sub-optimum) approach, for MISO
systems. This algorithm was recently developed in [11] and calculates the op-
timum beamformer (only) when the optimality of beamforming condition is
satisfied.

The simulations were for Uniform Linear Arrays (ULAs) under the two-path
delay spread correlation model, which was studied by Winters in [12].

Results are presented in Figure 3 for various scenarios2 and demonstrate that
the proposed 1-D method has significantly lower computational complexity, as
follows:

1Since rank (Hm) = 1, it is Hm = µpq, with µ the unique eigenvalue of Hm and p ∈

CM×1,q†
∈ CN×1 its left and right singular vectors, respectively.

2The exact parameters of these scenarios can be found in [8]-[9].



a. For the simulated scenarios related to MISO systems, the runtime of the
1-D method is on average 5 to 7 times faster than the interior-point method and
2 to 10 times faster than the asymptotic approach.

b. For the simulated scenarios related to MIMO systems, the runtime of the
1-D algorithm is approximately 8.5 times faster than the interior-point method.

3 Results for the optimality of beamforming con-

dition

As referred to in paragraph 1.2, the optimum beamformer achieves ergodic ca-
pacity when a necessary and sufficient optimality of beamforming condition is
satisfied. This condition was proven in [6] an is expressed by the following
inequality:

λmax

(

(IN − v
†
optvopt)K(IN − v

†
optvopt)

†
)

6 voptKv
†
opt (12)

where λmax (·) stands for the maximum eigenvalue and K ∈ HN
+ is expressed

as:
K = EH

[

H†(IM + SNRHv
†
optvoptH

†)−1H
]

(13)

Condition (12) is studied in this work for correlated MIMO Rician flat fading
channels (assuming perfect CSI at the receiver and CDIT), i.e. the combined
CMI-CCI model [13]. The parameters that affect condition (12) - and hence,
the optimality region, which is defined as the set of channel distribution param-
eters that satisfy condition (12)- are studied via simulations with the help of a
probabilistic approach, leading to important observations:

Observation 1. Beamforming becomes the rate-optimum strategy as the
SNR decreases.

Observation 2. Beamforming becomes the rate-optimum strategy as the
singular value of Hm, µ, increases.

Observation 3. Beamforming becomes the rate-optimum strategy as the
channel variance β decreases.

Observation 4. Beamforming becomes the rate-optimum strategy as φ (see
(4)) decreases.

Observation 5. Relatively low β values lead to abrupt increase of the
optimality region for relatively high values of the transmit antenna correlation
coefficient ρt. Moreover, in the low-ρt regime, the optimality region seems to
be less “sensitive” (i.e. is less affected) to an increase of the SNR, β and φ,
compared to the high-ρt regime.

Observation 6. Beamforming becomes the rate-optimum strategy as the
number of receive antenna elements (M) decreases.

The results show that the CDIT model under consideration incorporates the
basic characteristics of the uncorrelated MIMO Rician model (addressed with
observations 1-3 and 6), however, the model also reveals new characteristics
presented for the first time in this work (addressed with observations 4 and 5).
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Figure 3: Runtime vs. the number of channel samples for a MISO 4× 1/MIMO
4 × 4 system (a)/(b), and N with 2× 104 channel samples and M = 1/M = 4
(c)/(d).



Observations 1-5 are visualized in Figure 4. This figure shows a set of curves
on the µ− ρt plane, for different β values and φ = 35o/65o, SNR = 0/3dB and
Rx Angular Spread ∆r = 68o. Each curve represents a bound: any {µ, ρt} point
above this bound - i.e. in the region indicated with Prbf = 1 - corresponds to an
operational scenario where the optimum beamformer achieves ergodic capacity,
i.e. (12) is statistically always satisfied. The µ − ρt region where Prbf = 1 is
referred to as the “optimality region”.
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Figure 4: Optimality region µ−ρt, for a MIMO 4×4 system and {SNR = 0/3dB,
φ = 35o/65o, ∆r = 68o}.

4 Results using the 3GPPMIMO channel model

In the last part of this work the 3GPP MIMO channel model [14] is employed
in order to study the performance of the optimum beamformer with respect to
condition (12), using a probabilistic analysis and assuming perfect CSI at the
receiver and CDIT. Results are derived for the following cases:

a. Urban micro-cellular environment with LOS component. The long term
statistics of this environment simulates best a correlated MIMO Rician flat
fading channel and hence, the long term combined CMI-CCI model can be
employed [15]. In this case, the optimum beamformer achieves ergodic capacity
with probability 0.9 for a wide SNR range.

b. Suburban and urban macro/micro-cellular environments [16]. The long
term statistics of these environments simulate a MIMO Rayleigh flat fading
channel, where both the CMI/CCI model can be employed, as a short/long
term model, respectively. The analysis showed that in both CDIT models the
optimum beamformer achieves ergodic capacity with a probability >0.45, in all
operational environments and for a wide SNR range.



5 Conclusions

In this doctoral thesis the multi-dimensional and computationally complex op-
timization problem for the calculation of the rate-optimum beamforming trans-
mission in correlated MISO/MIMO Rician flat fading channels (combined CMI-
CCI model) is transformed into a simple 1-D optimization problem, which can
be subsequently solved using standard 1-D search algorithms, reducing system’s
complexity. The reduced complexity can be exploited to either reduce cost by
using devices with lower processing power or in order to: (a) operate in envi-
ronments with smaller coherence time, proportional to the relative processing
gain, and hence, support operational scenarios with higher mobility, (i.e. higher
speeds, proportional to the relative processing gain), (b) increase the available
processing power required by the system for other supplementary techniques.
Moreover, the optimality of beamforming condition is studied via simulations
for the combined CMI-CCI using a probabilistic analysis, and the optimality
region is plotted for different values of the channel distribution parameters and
the SNR. Generally, the knowledge of the optimality region can be valuable
during the system design and deployment phases: if information for the tar-
geted operational scenarios/channels is available, it can be used to produce the
optimality regions and hence, decide if optimum beamforming can be employed
as the main transmission strategy, which ultimately leads to reducing the sys-
tem’s complexity and cost. Results demonstrate that there is a wide range of
operational scenarios and SNR values where the optimum beamformer achieves
ergodic capacity or shows a relatively high (or near-optimum) performance, a
fact that justifies the significance of the proposed solutions and the contribution
of this work.
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